Synthesis of 1-[(O,O-diphenyl phosphonyl)arylmethyleneamino carbonylmethyl]uracils

Xue Jun LIU*, Guo Chen CHI, Ru Yu CHEN

Institute and National Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071

Abstracts: A new series of compounds, 1-[(O,O-diphenyl phosphonyl)arylmethylene aminocarbo-nylmethyl]uracils, were synthesized in yield of 54.6-72.0% with DCC/BtOH as the coupling reagent, and their biological activities are being tested.

Keywords: Uracil, α-aminophosphonic acid.

Recently, the derivatives of N-1 pyrimidines or N-9 purines, substituted by a phosphonyl group were found as a new class of antiviral agents with a broad spectrum of activities against retroviruses and DNA virus^{1,2}. And at the same time, α -aminophosphonic acids also exhibit various interesting biological activities. Some of them have been employed as anticancer, antibacterial and antibiotics³⁻⁵. So we designed and synthesized the title compounds in order to search for new biologically activitive substances. The synthetic route is shown in **Scheme I**.

Scheme I

Xue Jun LIU et al.

The key intermediate **2** was obtained in 91% yield by adding the aqueous solution of bromoacetic acid to the mixture of potassium hydroxide and uracil in water at 45 °C. To the mixture of **2** and 1-hydroxybenzotrizole (BtOH) in DMF at 0°C was dropped slight excess of DCC in DMF resulting in the intermediate **3**, to which (unseparated) was then added a solution of α -aminophosphonate⁶ in DMF giving the title compounds **4**. Some of experimental results were listed in the **Table I**. The structures of **4** were characterized by ¹HNMR, ³¹PNMR, elemental analysis and IR⁷.

 Table I
 Experimental data of compounds 4

Compd.	R	State	m.p.(°C)	yield (%)
4a	Ph	White Solid	197-198	69.1
4b	p-Cl-Ph	White Solid	204-205	66.5
4c	<i>p</i> -Me-Ph	White Solid	196-197	72.0
4d	o-MeO-Ph	White Solid	177-178	62.4
4e	m-NO ₂ -Ph	Yellow Solid	168-169	54.6
4f	p-NO ₂ -Ph	Yellow Solid	223-224	55.1

Acknowledgment

This project was supported by the National Natural Science Foundation of China.

References and notes

- 1. E. De Clercq, A. Holy, I. Rosenberg, T.Sakumas, J. Balzarini, and P. C. Maudgal, *Nature* **1986**, *323*, 464.
- 2. E. De Clercq, T. Sakuma, M. Baba, R. Pauwels, J. Balzarini, I. Rosenberg, and A. Holy, *Antiviral Res.* **1987**, *8*, 261.
- 3. T. Klenner, P. Valenzuele-Paz, B. K. Keppler, G. Angres, H. R. Scherf, F. Winger, and D. Schmal, *Cancer Treat Rev.*, **1990**, *17*, 253.
- 4. F. R. Atherton, C. H. Hassall, and R. W. Lambert, J. Med. Chem., 1986, 29, 29.
- 5. E. Neuzil, and A. Cassaigne, Ann. Biochem. Med., 1980, 34, 165.
- 6. J. Oleksyszyn, L. Subotkowska, and P. Mastalerz, Synthesis, 1979, 986.
- 7. Selected spectroscopic data for compound 4d:
- ¹HNMR δ (DMSO): 3.76 (s, 3H), 4.48 (q, 2H), 5.54 (d, 1H), 6.40 (dd, 1H), 6.84 \sim 7.60 (m, 15H), 9.50 (d,1H), 11.26 (s, 1H); ³¹PNMR δ (DMSO): 19.98; EA: Calcd: C (59.89), H (4.64), N (8.06), Found: C (59.93), H (4.59), N (8.26). IR (KBr,cm⁻¹): 3429, 3279, 3052, 2940, 2837, 1682, 1548, 1488, 1382, 1237, 1186, 1025, 953.

Received 29 April 1999